Specific premature epigenetic aging of cartilage in osteoarthritis
نویسندگان
چکیده
Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95% CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95% CI = -1.8 to 1.9, P = 0.3) and in blood (-0.6 years; 95% CI = -1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability.
منابع مشابه
Towards elucidating the role of SirT1 in osteoarthritis.
Osteoarthritis (OA) is a degenerative joint disease particularly affecting the elderly population. Although several genetic features have been characterized as risk factors for OA susceptibility, a growing body of evidence indicates that epigenetic effectors may also modulate gene expression and thus contribute to OA pathology. One such epigenetic regulator of particular relevance to OA is Sile...
متن کاملEpigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have...
متن کاملArticular Cartilage Changes in Maturing Athletes
CONTEXT Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete-from chondrocyte...
متن کاملInterplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis
Osteoarthritis (OA), a degenerative disease of diarthrodial joints, is influenced by mechanical and inflammatory factors with aging, obesity, chronic injuries, and secondary diseases thought to be major factors driving the process of articular cartilage degeneration. Chondrocytes, the cellular component of cartilage, reside in an avascular environment and normally have limited potential to repl...
متن کاملChondrocyte senescence and telomere regulation: implications in cartilage aging and cancer (a brief review).
Recent studies on osteoarthritis and the cartilage aging in our laboratory demonstrate that chronologic age correlates with molecular changes in human chondrocytes that affect cell cycle control and replicative life span. These findings indicate that age-related changes in chondrocytes may explain the heightened risk for development of primary osteoarthritis (OA) with increasing age. Concomitan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2016